

KO^tBu-Mediated Synthesis of Dimethylisoindolin-1-ones and Dimethyl-5-phenylisoindolin-1-ones: Selective C-C Coupling of an Unreactive Tertiary sp³ C-H Bond

Bhagat Singh Bhakuni, Abhimanyu Yaday, Shailesh Kumar, Saket Patel, Shubham Sharma, and Sangit Kumar*

Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-pass Road, Bhauri, Bhopal, Madhya Pradesh, India 462 066

Supporting Information

$$X_2 = H$$
 $X_2 = H$
 $X_3 = H$
 $X_4 = H$

ABSTRACT: A new reaction for the synthesis of dimethylisoindolinones has been presented from 2-halo-N-isopropyl-Nalkylbenzamide substrates and KO'Bu by the selective C-C coupling of an unreactive tertiary sp³ C-H bond. The reaction manifested an excellent selectivity toward a tertiary sp³ C-H bond over primary or sec C-H bond. Moreover, biaryl C-C coupling along with alkyl-aryl C-C coupling can be achieved in one pot using dihalobenzamides for the synthesis of biaryl 5phenylisoindolin-1-ones. It seems that the reaction proceeds via a radical pathway in which the aryl radical translocates via 1,5hydrogen atom transfer (HAT), forming a tertiary alkyl carbon-centered radical. The generated tertiary alkyl radical could attack the benzamide ring in a 5-exo/endo-trig manner followed by the release of an electron and a proton, leading to a five-membered isoindolinone ring. HAT seems to be responsible for the selective functionalization of the tertiary alkyl group over primary and secondary C-H bonds.

■ INTRODUCTION

Selective functionalization of unreactive tertiary alkyl C-H bonds for carbon-carbon coupling reactions is highly desirable for the synthesis of organic molecules bearing a quaternary carbon center. For the functionalization of a C-H bond, a transition-metal catalyst, particularly palladium, is often employed for carbon-carbon coupling reactions. Transitionmetal-free approaches are also being studied for the construction of carbon-carbon bonds as an alternative. Recently, the use of potassium tert-butoxide reagent for the promotion of carbon-carbon bond formation has aroused interest in synthetic chemistry due to its ready availability and nontoxicity. KO^tBu-mediated inter- and intramolecular sp²-sp² and activated sp³-sp² carbon-carbon coupling reactions have been reported in recent times.¹⁻⁴ Herein, we present the KO^tBu-mediated synthesis of isoindolin-1-ones from 2-halo-Nisopropyl-N-alkylbenzamide substrates by the selective C-C coupling of an unreactive tertiary sp³ C-H bond, which has not been reported by any method (Scheme 1). The only recent report is on Ni-catalyzed synthesis of isoindolinones.⁵ Nonetheless, the reaction was noted to be unselective toward secondary and tertiary alkyl C-H bonds.

The isoindolin-1-one core is present in a broad range of biologically relevant molecules having a wide range of medicinal properties such as anti-inflammatory, antihypertensive, antiulcer, and antileukemic.⁶ As a result, several synthetic routes have been developed for the preparation of isoindolinones such as Grignard or lithiation procedures, reduction of phthalaldehyde, and transition-metal-catalyzed constructions.^{7,8} Nonetheless, there is only one report on the synthesis of dimethylisoindolin-1-one 1 bearing a quaternary carbon center in the ring in which 2-isoindoline-1,3-dione is converted into indolinone by the reaction of zinc, followed by the addition of potassium amide base and methyl iodide. On the other hand, several methods on the coupling of activated alkyl C-H bonds with aniline rings have been studied for the synthesis of oxindole, a moiety closely related to isoindolin-1-one. 10 A method which is transition metal free and requires readily accessible substrates and reagents would be highly desirable for the synthesis of isoindolinones. N,N-Diisopropylamide is used as an ortho directing and protecting group for acids for ortho-

Received: December 27, 2013 Published: March 5, 2014

Scheme 1. C-C Coupling in 2-Halo-N,N-dialkylbenzamide

Earlier work

This work

$$X_1 = H$$
 X_2
 $X_1 = I$, Br, Cl

 $X_2 = CI$
 $X_1 = I$
 $X_2 = CI$
 $X_1 = I$
 $X_2 = CI$
 $X_2 = CI$
 $X_3 = I$
 $X_4 = I$
 $X_2 = CI$
 $X_1 = I$
 $X_2 = CI$
 $X_2 = CI$
 $X_3 = I$
 $X_4 = I$
 $X_2 = CI$
 $X_1 = I$
 $X_2 = CI$
 $X_2 = CI$
 $X_3 = I$
 $X_4 = I$
 $X_5 = I$
 X_5

metalation reactions and is noted to be unreactive even in the presence of a strong base such as *t*-BuLi.¹¹ Palladium-catalyzed C–H functionalization in carboxamide has been reported; however, Pd shows selectivity toward the methyl group over a tertiary C–H bond (Scheme 1, eq 1).¹² Here, selective formation of a tertiary alkyl—aryl carbon—carbon bond is realized while studying intermolecular biaryl coupling in 2-iodo-*N*,*N*-diisopropylbenzamide (Scheme 2).¹³ The presented reaction shows excellent selectivity toward a tertiary C–H bond over primary methyl and secondary ethyl C–H bonds (Scheme 1, eq 2). Moreover, arylation of the benzamide ring could be achieved along with alkylation in one pot from 4-chloro-2-iodobenzamides (Scheme 1, eq 3).

■ RESULTS AND DISCUSSION

We started optimizing the reaction conditions using 2-iodo-N,N-diisopropylbenzamide in various solvents using KO^tBu (Scheme 2). Optimization of the reaction conditions is

Scheme 2. Optimization of Reaction Conditions

presented in the Supporting Information (Table S1, page S2; for the crystal structure of isoindolinone 1, see Figure S126, page S131). Potassium *tert*-butoxide alone was noted to be ineffective in benzene; however, it yielded 86% of isoindolinone 1 in DMSO and 10% substrate was recovered. Addition of a catalytic amount (5 mol %) of vitamin E, a phenolic natural product, to the reaction mixture not only led to the complete conversion of the substrate into isoindolinone 1 but also reduced the reaction time from 12 to 3 h. 2-Bromo- and 2-chloro-*N*,*N*-diisopropylbenzamide substrates were found to be less reactive in DMSO; however, they gave a good yield of 1 in benzene in the presence of the radical initiator azomethylvaler-onitrile (AMVN).

After screening for various reaction conditions, we decided to use vitamin E as an additive in DMSO for iodo substrates and AMVN as a radical initiator in benzene for bromo- and chlorobenzamides. Various *N*-alkyl-substituted 2-halobenzamides were explored to study the selectivity in the KO⁶Bumediated alkyl-aryl coupling reactions (Table 1). We began with *N*-methyl-*N*-isopropyl substrates (entries 1–4, Table 1) and noticed that the reaction showed excellent selectivity toward a tertiary isopropyl C–H bond over a methyl C–H bond, as 1–4 were obtained exclusively under the optimized

reaction conditions. We have also studied the memory of positions in the reaction by using 2-iodo-N-isopropyl-N,3dimethylbenzamide and 2-iodo-N-isopropyl-N.5-dimethylbenzamide substrates (entries 2 and 3, Table 1). Both substrates gave nearly the same ratio (64:36 vs 70:30) of isomers 3a and 3b, which suggests that the memory of the positions is not the determining factor for the selective formation of regioisomers in this study. Next, selectivity toward an ethyl vs an isopropyl group was studied (entries 5-7, Table 1). To our delight, the tertiary isopropyl C-H bond showed reactivity over the ethyl C-H bond in the C-C coupling reaction and dimethylisoindolinones 5-7 were obtained in good yields. Interestingly, benzamides having a cyclohexyl substitutent (entries 8 and 9, Table 1) also underwent C-C coupling reactions and 2'methylspiro[cyclohexane-1,1'-isoindolin]-3'-ones 9 and 10 were obtained selectively in 94 and 93% yields, respectively. After this, N,N-dialkylbenzamides having only primary or secondary C-H bonds were studied in the reaction (entry 10, Table 1). N,N-Diethyl-2-iodobenzamide gave a 26% yield of C-C coupled product 10 and the reaction was observed to be sluggish. N,N-Dimethyl-2-iodobenzamide substrate did not produce even traces of C-C coupled product, which demonstrated the selectivity of this reaction toward a tertiary C-H bond. Next, N-methyl-N-benzylic-2-iodobenzamide substrates were used in KO^tBu-mediated alkyl-aryl C-C coupling (entries 11-13, Table 1). The reaction showed selectivity toward the benzylic C-H bond and benzylic isoindolinones 11-13 were obtained as major products. In the end, selectivity toward aromatic versus isopropyl C-H bonds was evaluated by using N-isopropyl-N-phenyl-2iodobenzamide substrate. Unfortunately, the reaction was selective toward sp² C-H bonds and yielded a 70:30 ratio of phenanthridinone 14b, an sp^2-sp^2 C-C coupled product, and indolinone 14a, an sp^3-sp^2 C-C coupled product, respectively.

Next, benzamide ring substituted substrates were investigated in the KO^tBu-mediated reaction (entries 2–4 and 6–9, Table 1, and Table 2). Various functional groups such as nitro, chloro, methyl, methoxy, and dimethoxy have shown compatibility with the reaction conditions. A substrate with the chloro substituent para to the amide functionality gave the single regioisomers 4, 6, 9, and 15 (entries 4, 6, 9, Table 1, and entry 1, Table 2). A 3-nitrobenzamide substrate also gave one regioisomer, 16, as the major product (entry 2, Table 2). 2-Chloro-N,N-diisopropyl-5-nitrobenzamide failed to provide a C-C coupled product and yielded a hydroxylated product, 2hydroxy-N,N-diisopropyl-5-nitrobenzamide (see the Experimental Section). Next, dimethoxybenzamide substrate also afforded the single regioisomer 17 (entry 3, Table 2). On the other hand, methyl-substituted benzamides (entries 2 and 3, Table 1, and entry 4, Table 2) gave the two regioisomers 3a,b

Table 1. Coupling of N-Alkyl-Substituted Arylbenzamides

Entry	Substrate	Isoindolinone (Yield) ^a	Entry	Substrate	Isoindolinone (Yield) ^a
1	No o	0 N— 2 (90)	8 9	X O	x N-
2 ^b	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3a (70) 3b (20) ^b	10	NO N	8 X, H (94) 9 X, Cl (93)
3 ^b		3a (68) 3b (18) ^b	11 ^b	Ph N O	10 (26)
4	CI	CI N-	12	OMe	11a (68) 11b(10) ^b
5	No	5 (89)	13		12 (60)
6	CI	CI N N N N N N N N N N N N N N N N N N N			13 (70)
7°	N O Br	7 (75)	14 ^b	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N-Ph
-		. ()		· I	14a (27) 14b (64) ^b

^aIsolated yields. Isoindolinones were obtained from iodo substrates by using KO'Bu (3 equiv) and vitamin E (5 mol %) in DMSO (procedure A). ^bTwo regioisomers were obtained, and both were isolated. ^cIsoindolinone 7 was obtained from the bromo substrate using KO'Bu (3 equiv) and AMVN (10 mol %) in benzene (procedure B).

and **18a,b**, respectively. Similarly, 5-methoxy-substituted benzamide reacted to give the two regioisomers **19a,b** (entry 5, Table 2). After exploring benzene-based substrates, we tested different aryl *N,N*-diisopropylcarboxamides under the reaction conditions (entry 7, Table 1, and entries 6–8, Table 2). To our delight, not only naphthyl and pyridyl amides but also ferrocenylamide showed amenability to the reaction conditions and produced the respective novel ferrocenylisoindolinone **21** quantitatively. The structure of ferrocenylisoindolinone **21** has also been established by an X-ray single-crystal structure study (see the Supporting Information, Figure S127, page S132). ¹⁴

After exploring the tertiary sp³ C–H bond coupling reaction, we envisioned synthesizing isoindolinones containing a biaryl core in a single pot (Scheme 3). Biaryl cores are privileged structures having numerous applications in pharmaceuticals, agrochemicals, and materials.¹⁵

For this purpose, readily accessible 4-chloro-2-iodo-*N*,*N*-dialkylbenzamides were exploited in the KO^tBu-mediated reaction. In the presence of excess KO^tBu, the reaction yielded the desired biaryls, 5-phenylisoindolin-1-ones **23–26**, in 86–89% yields in one pot on heating for a longer period of time. The coupling of 4-chloro-2-iodo-*N*,*N*-diisopropylbenzamide

with benzene only occurred in the presence of AMVN initiator under the harsh reaction conditions. The formation of 5-phenylisoindolinone 23 was not observed under the vitamin E catalyzed reaction conditions. 5-Phenylisoindolinone 23 has also been characterized by an X-ray single-crystal structure study (see the Supporting Information, Figure S128, page S133). It is worth noting that the reaction proceeds in a sequential manner: first the intramolecular alkyl—aryl C—C coupled product isoindolinone 1 was formed, followed by sp²—sp² biaryl coupling of 1 with benzene leading to biaryl 23. 16

A plausible mechanism is depicted in Scheme 4, and detailed vitamin E catalyzed and AMVN-mediated mechanisms are presented in the Supporting Information (pages S2–S3). On the basis of the regioselective tertiary sp³ C–H bond functionalization over methyl or ethyl substituents in this study and KO^tBu-mediated biaryl coupling reactions, ^{1–3} it is reasonable to assume that the reaction proceeds via a radical pathway. It seems that the electron transfer from KO^tBu to 2-iodobenzamamide leads to the radical anion I, as in the presence of vitamin E the rate of reaction increases considerably, which is a good one-electron donor in the radical chain reactions.¹⁷ Radical anion I may produce phenyl radical II

Table 2. Coupling of 2-Iodo-N,N-diisopropylarylamides^a

Entry	Substrate	Product	Yield (%)
1	N'Pr ₂	CI	15 (96)
2 ^b	N'Pr ₂ O Br NO ₂	NO_2	16 (44)
3 ^b	MeO N'Pr ₂	MeO N—	17 (67)
4 ^c	N'Pr ₂ O CH ₃	18a 18b	18a (80) 18b (18)
5 ^d	MeO N'Pr ₂	MeO N OMe	19a/19b (68)
6°	N ⁱ Pr ₂ O Br	19a 19b	20a (60) 20b (34)
7	('Pr) ₂ N O Fe	20a 20b	21 (96)
8 ^b	N'Pr ₂		22 (79)

^aThe reaction was carried out on a 1 mmol scale using 2-halobenzamide substrates. Procedure A was applied for iodo substrates and procedure B was applied for bromo susbstrates. ^bThe formation of a single isomer was noted and established by GC-MS analysis of the crude reaction mixture. ^cTwo regioisomers were obtained, and both were isolated. ^dThe combined yield for both isomers is presented, and the isomers were not separated.

Scheme 3. Synthesis of 5-Phenylisoindolinones

upon the release of iodide. 1,5-Hydrogen atom transfer reaction led to the tertiary alkyl radical III. This seems to be the key step in this transformation and could be the reason for the excellent

selectivity toward a tertiary C-H bond. The alkyl radical III would attack the benzamide ring in a 5-exo/endo-trig manner, leading to the cyclohexadienyl radical IV. Abstraction of a proton from radical IV would give radical anion V. Finally radical anion V donates an electron to the 2-iodobenzamide substrate, leading to the radical anion I and thus completing the radical chain reaction with the concomitant release of isoindolinone 1. Biaryl isoindolinone 23 could be realized by the coupling of 5-chloro-2-isopropyl-3,3-dimethylisoindolin-1-one 15 with benzene (see the proposed mechanism in the Supporting Information, page S4). 1,2c

SUMMARY

In conclusion, a transition-metal-free selective carbon—carbon coupling of an unreactive tertiary alkyl C–H bond has been achieved, which has not been reported earlier by any method.

Scheme 4. Proposed Mechanism for sp³-C-H Coupling

Potassium *tert*-butoxide mediated coupling of a tertiary sp³ C—H bond was successfully employed with a series of 2-halobenzamides such as ferrocene-, pyridine-, and naphthalene-derived substrates to furnish diversified isoindolinones. The presented methodology enables the construction of biologically relevant isoindolinone and biarylisoindolinone organic molecules from monohalo- and dihalobenzamides, respectively, in a single pot. Further application and understanding of the reaction, particularly the enantioselective version, are currently in progress in our laboratory.

EXPERIMENTAL SECTION

General Experimental Details. All NMR experiments were carried out on a 400 MHz spectrometer. CDCl₃ and NMR chemical shifts are reported in ppm referenced to the solvent peaks of CDCl₃ $(7.26 \text{ ppm for }^{1}\text{H and } 77.16 (\pm 0.06) \text{ ppm for }^{13}\text{C, respectively})$. Highresolution mass analysis was performed on a quadrupole time of flight (Q-TOF) mass spectrometer equipped with an ESI source (positive). DMF and DMSO with seal septa and 1,10-phenanthroline were used as received. Benzene and mesitylene were dried over calcium hydride and freshly distilled before use. Potassium tert-butoxide (98% purity) was used as purchased and stored in a desiccator. Silica gel (100-200 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates. Isoindolinones $1,^9$ $5,^{18}$ $8,^{19}$ $10,^5$ $11a,^{20}$ $11b,^{21}$ $13,^{22}$ $14a,^{23}$ and $14b^{10i}$ are known, and the rest of the isoindolinones are unknown. Substituted benzoyl chlorides were prepared from the respective benzoic acids by refluxing with excess thionyl chloride and otherwise prepared according to the reported procedure. Excess thionyl chloride was removed under vacuum, and the resulting residue was used for amide preparation without further purification. Substrates: 2-iodo-*N,N*-diisopropylbenzamide (substrate for 1),²⁴ 2-iodo-*N*-phenylethylbenzamide^{13a} (precursor for 2-iodo-N-methyl-N-phenylethylbenzamide), N,N-diethyl-2iodobenzamide²⁵ (substrate for 10), 4-chloro-2-iodo-N,N-diisopropylbenzamide²⁶ (substrate for 15), 2-bromo-N,N-diisopropyl-4,5-dimethoxybenzamide⁷ (substrate for 17), 2-iodo-N,N-diisopropyl-3-methylbenzamide²⁷ (substrate for 18a,b), 2-bromo-N,N-diisopropyl-5methoxybenzamide²⁸ (substrate for 19), 2-iodo-N,N-diisopropylferrocenecarboxamide^{11b} (substrate for **21**), and 2-hydroxy-*N*,*N*-diisopropyl-5-nitrobenzamide²⁹ are also known, and analytical data correlate well with the reported values.

General Procedures for the Synthesis of 2-Halo Tertiary Benzamides. Substrates for isoindolinones 1-22 (except 13) were prepared by following Scheme 5. The substrate for 13 was prepared by using NaH and methyl iodide. The 2-halo tertiary benzamides substrates show E/Z rotational isomerism, as observed in $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra.

General Procedures for Amide Synthesis: Synthesis of 2-lodo-N,N-diisopropylbenzamide Substrate for 1). To a stirred solution of 2-iodobenzoyl chloride (266 mg, 1.0 mmol) in DCM (10 mL) were added dropwise diisopropylamine (152 mg, 1.5 mmol) and

Scheme 5. Synthesis of 2-Halo Tertiary Benzamides

$$\begin{array}{c|c} OH & SOCI_2 \\ \hline \\ X & DCM \\ \hline \\ NH_2 & Ph \\ \hline \\ NH_2 & Ph \\ \hline \\ NH_2 & Ph \\ \hline \\ NH_3 & DMF \\ \hline \end{array}$$

triethylamine (203 mg, 2.0 mmol) in DCM (10 mL) using a dropping funnel at 0 °C. After complete addition, the reaction mixture was stirred for 5 h. After this 10% HCl aqueous solution (40 mL) was added to the reaction mixture. The resulting solution was extracted with DCM (20 mL × 3), and the DCM layer was washed with water (30 mL) and dried over Na₂SO₄. The organic layer was concentrated on a rotary evaporator under vacuum. A white solid was obtained. Yield: 298 mg, 90%. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 7.53 Hz, 1H), 7.13 (dd, J = 7.54 Hz, J = 1.54 Hz, 1H), 7.01 (dt, J = 7.74 Hz, J = 1.54 Hz, 1H), 3.61–3.45 (m, 2H), 1.58 (d, J = 6.87 Hz, 3H), 1.55 (d, J = 6.70 Hz, 3H), 1.05 (d, J = 6.70 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 144.1, 139.3, 129.5, 128.2, 125.9, 92.3, 51.3, 46.1, 20.8, 20.7, 20.1. LRMS: m/z 332.0, calculated for C₁₃H₁₈INO + H⁺ 332.1.

General Procedures for the Synthesis of Isoindolinones. Isoindolinones were synthesized from 2-iodobenzamides by following procedure A. 2-Bromo and 2-chloro substrates were converted into products by following procedure B.

Procedure A for the Synthesis of 2-Isopropyl-3,3-dimethylisoin-dolin-1-one (1). A sealed tube (25 mL) containing 2 mL of dry DMSO was charged with 2-iodo- N_iN -diisopropylbenzamide (464 mg, 1.4 mmol), vitamin E (30 mg, 0.07 mmol), and KO t Bu (474 mg, 4.2 mmol) under N_2 . The resulting reaction mixture was refluxed for 3 h at 100 °C. The progress of the reaction was monitored by TLC. After completion of the reaction, water (110 mL) was added. The resulting brownish white solution was stirred for 30 min and extracted with ethyl acetate (20 mL \times 3), dried over Na_2SO_4 , and concentrated under vacuum. The resulting white crystalline solid was purified by flash column chromatography. Yield: 278 mg, 98%.

Procedure B. In a 15 mL capacity sealed tube containing 5 mL of benzene, the substrate (304 mg, 1 mmol), AMVN (25 mg, 0.1 mmol, 10 mol %), and potassium tert-butoxide (358 mg, 3.1 mmol, 3 equiv) were heated to 100 °C. The progress of the reaction was monitored by TLC. The reaction mixture was refluxed for 3 h at 100 °C. After completion of the reaction, water (100 mL) was added to the resulting brownish white solid and the mixture was stirred for 30 min. The resulting solution was extracted with ethyl acetate (20 mL \times 3) and

dried over Na_2SO_4 . The organic layer was concentrated on a rotary evaporator under vacuum. The resulting crude reaction mixture was purified by column chromatography using hexane/ethyl acetate (8/2) on silica to give the desired isoindolinone 1. Yield: 176 mg, 87%.

2-Isopropyl-3,3-dimethylisoindolin-1-one (1) from 2-lodo-N,N-diisopropylbenzamide. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 3.59–3.55 (m, 1H), 1.48 (d, J = 8.0 Hz, 6H), 1.39 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 151.3, 132.0, 131.2, 127.8, 123.1, 120.6, 63.3, 44.5, 25.4, 20.5. LRMS: m/z 204.1, calculated for $C_{13}H_{17}O$ N + H $^+$ 204.1.

2-lodo-N-isopropyl-N-methylbenzamide (Substrate for 2). 2-Iodo-N-isopropyl-N-methylbenzamide was prepared using 2-iodobenzoyl chloride and N-methyl-N-isopropylamine, which gave a white semisolid. Yield: 93%. $^1{\rm H}$ NMR (400 MHz, CDCl₃): δ 7.82–7.78 (m, 2H), 7.38–7.34 (m, 2H), 7.19–7.14 (m, 2H), 7.07–7.01 (m, 2H), 5.02 (m, 1H), 3.64 (m, 1H), 2.97 (s, 3H), 2.64 (s, 3H), 1.26–1.05(s, 12H). $^{13}{\rm C}$ NMR (100 MHz, CDCl₃): δ 170.4, 170.3, 143.3, 141.7, 139.4, 139.1, 129.9, 128.5, 128.2, 126.8, 126.4, 92.5, 92.3, 50.0, 44.1, 29.6, 25.7, 20.6, 20.2. HRMS: m/z 303.0094, calculated for ${\rm C}_{11}{\rm H}_{14}{\rm INO}$ 303.0120.

2,3,3-Trimethylisoindolin-1-one (2). Compound 2 was prepared by following procedure A, which gave a white solid. Yield: 156 mg, 90%. 1 H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.24 Hz, 1H) 7.51 (t, J = 7.24 Hz, 1H) 7.43–7.38 (m, 2H) 3.01 (s, 3H) 1.43 (s, 6H). 13 C NMR (400 MHz, CDCl₃) δ 167.2, 151.5, 131.4, 130.91, 128.0, 123.6, 120.6, 62.1, 24.9, 23.9. HRMS: m/z 175.0968, calculated for C₁₁H₁₃NO 175.0997.

2-lodo-N-isopropyl-N,3-dimethylbenzamide (Substrate for 3). 2-Iodo-N-isopropyl-N,3-dimethylbenzamide was prepared using 2-iodo-3-methylbenzoyl chloride and N-methyl-N-isopropylamine. A white solid was obtained. Yield: 92%. ¹H NMR (400 MHz, CDCl₃): δ 7.24 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 8.0 Hz, 2H) 6.93(d, J = 8.0 Hz, 2H), 5.06–5.00 (m, 1H), 3.69–3.63 (m, 1H), 2.96 (s, 3H), 2.62 (s, 3H), 2.45 (d, J = 4.0 Hz, 6H), 1.24 (d, J = 4.0 Hz, 6H), 1.20 (d, J = 4.0 Hz, 3H), 1.05 (d, J = 4.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 170.9, 144.4, 142.9, 142.6, 129.3, 128.6, 128.3, 129.2, 123.9, 123.6, 99.4, 99.1, 49.9, 44.0, 25.6, 20.6, 20.2, 19.5, 18.7. HRMS: m/z 317.0274, calculated for C₁₂H₁₆INO 317.0277.

2,3,3,4-Tetramethylisoindolin-1-one (3a) from 2-lodo-N-isopropyl-N,3-dimethylbenzamide. Following general procedure A, a white solid was obtained, which was purified by column chromatography hexane/EtOAc (8/2) on silica gel. This gave two fractions: first fraction, white solid 3a; second fraction, white solid 3b. Yield for 3a: 0.132 g (70%). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 3.0 (s, 3H), 2.50 (s, 3H), 1.50 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 148.4, 133.9, 131.7, 131.6, 128.0, 121.3, 62.8, 23.5, 22.5, 18.7. HRMS: m/z 189.1134, calculated for C₁₂H₁₅NO 189.1154.

2,3,3,6-Tetramethylisoindolin-1-one (**3b**) from 2-lodo-N-isopropyl-N,3-dimethylbenzamide. Second fraction. Yield: 0.038 g (20%). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (s, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 3.00 (s, 3H), 2.41 (s, 3H), 1.41 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.4, 148.9, 137.9, 132.4, 131.0, 123.8, 120.4, 61.9, 25.0, 23.9, 21.3. HRMS: m/z 189.1147, calculated for $C_{12}H_{15}NO$ 189.1154.

2-lodo-N-isopropyl-N,5-dimethylbenzamide (Substrate for **3a,b**). This substrate was prepared from 2-iodo-4-methylbenzoyl chloride and N-methyl-N-isopropylamine. Yield: 87%. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (t, J = 8.0 Hz, 2H), 6.94 (t, J = 4.0 Hz, 2H), 4.96 (m, 1H), 3.62 (m, 1H), 2.91 (m, 1H), 2.60 (m, 1H), 2.24 (s, 6H), 1.21 (d, J = 4.0 Hz, 6H), 1.16 (d, J = 4.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 170.3, 143.2, 143.1, 139.0, 138.8, 138.7, 138.5, 130.92, 130.90, 127.6, 127.1, 88.4, 88.1, 49.9, 44.0, 29.6, 25.6, 21.0, 20.9, 20.6, 20.3. HRMS: m/z: 317.0251, calculated for C₁₂H₁₆INO 317.0276.

2,3,3,4-Tetramethylisoindolin-1-one (**3a**) and 2,3,3,6-Tetramethylisoindolin-1-one (**3b**). The ratio of **3a** and **3b** is 64:36, obtained from 2-iodo-*N*-isopropyl-*N*,5-dimethylbenzamide substrate. This is similar to the ratio obtained from 2-iodo-*N*-isopropyl-*N*,3-dimethyl-

benzamide substrate. ¹H NMR of **3a,b** (400 MHz, CDCl₃): ratio 64:36, δ 7.67 (d), 7.61 (t), 7.32 (d), 7.27 (t), 3.01 (s), 3.00 (s), 2.49 (s), 2.40 (s), 1.50 (s), 1.41 (s). ¹³C NMR (100 MHz, CDCl₃): δ 167.4, 167.2, 148.9, 148.4, 137.93, 137.92, 132.4, 131.7, 131.5, 131.0, 128.0, 123.8, 121.3, 120.4, 62.9, 61.9, 25.0, 23.9, 23.5, 22.5, 21.3, 18.7.

4-Chloro-2-iodo-N-isopropyl-N-methylbenzamide (Substrate for 4 and 24). 4-Chloro-2-iodo-N-isopropyl-N-methylbenzamide was prepared using 4-chloro-2-iodobenzoyl chloride and N-methyl-N-isopropylamine. Yield: 95%. 1 H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.07 (q, J = 4.0 Hz, 2H), 4.99–4.92 (m, 1H), 3.62–3.55 (m, 1H), 2.93 (s, 3H), 2.60 (s, 3H), 1.23–1.18 (m, 9H), 1.04 (d, J = 8.0 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ 169.6, 169.5, 141.72, 141.70, 138.8, 138.5, 134.8, 134.7, 128.8, 128.6, 127.6, 127.1, 92.7, 92.5, 50.1, 44.4, 25.8, 20.6, 20.2. HRMS: m/z 336.9739, calculated for C₁₁H₁₃NOICl 336.9730.

5-Chloro-2,3,3-trimethylisoindolin-1-one (4) from 4-Chloro-N-methyl-2-iodo-N-isopropylbenzamide. Compound 4 was prepared by following procedure A. White solid. Yield: 0.192 g (92%). 1 H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 2H), 3.0 (s, 3H), 1.44 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 178.9, 153.1, 137.8, 129.4, 128.6, 124.9, 121.3, 61.9, 24.8, 24.0. HRMS: m/z 209.0592, calculated for C_{11} H₁₂NOCl 209.0607.

N-Ethyl-2-iodo-N-isopropylbenzamide (Substrate for 5). *N-*Ethyl-2-iodo-*N-*isopropylbenzamide was prepared using 2-iodobenzoyl chloride and *N-*ethyl-*N-*isopropylamine. Yield: 70%. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (t, J = 7.81 Hz, 2H), 7.37–7.33 (m, 2H), 7.22–7.14 (m, 2H), 7.05–7.01 (m, 2H), 3.64–3.53 (m, 3H), 3.32–3.02 (m, 3H), 1.34–1.23 (m, 12H), 1.06–0.98 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 170.0, 143.4, 139.3, 139.1, 129.8, 129.7, 128.2, 128.1, 127.2, 126.3, 92.9, 92.5, 50.5, 46.2, 39.3, 35.4, 21.24, 21.19, 16.3, 14.4. HRMS: m/z 317.0255, calculated for C₁₂H₁₆INO 317.0277.

2-Ethyl-3,3-dimethylisoindolin-1-one (5) from N-Ethyl-2-iodo-N-isopropylbenzamide. Compound 5 was prepared by following procedure C. White semisolid. Yield: 0.168 g (89%). 1 H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 6.0 Hz, 1H), 7.41 (m, 1H), 7.34 (m, 1H), 3.49 (q, J = 4.0 Hz, 2H), 1.46 (s, 6H), 1.28 (t, J = 8.0 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ 167.4, 151.6, 131.4, 128.5, 127.9, 123.4, 120.6, 62.8, 33.4, 26.0, 14.7. HRMS: m/z 190.1249, calculated for $C_{12}H_{15}NO + H^+$ 190.1232.

4-Chloro-N-ethyl-2-iodo-N-isopropylbenzamide (Substrate for 6 and 25). 4-Chloro-N-ethyl-2-iodo-N-isopropylbenzamide was prepared using 4-chloro-2-iodobenzoyl chloride and N-ethyl-N-isopropylamine. Yield: 85%. 1 H NMR (400 MHz, CDCl₃): δ 7.83 (dd, J = 7.11 Hz, J = 1.85 Hz, 2H), 7.38–7.34 (d, J = 7.31 Hz, 2H), 7.16–7.08 (m, 2H), 3.63–3.53 (m, 3H), 3.33–3.02 (m, 3H), 1.35–1.27 (m, 12H), 1.07–1.00 (m, 6H). 13 C NMR (100 MHz, CDCl₃): δ 169.7, 169.1, 141.9, 141.8, 138.8, 138.5, 134.6, 134.5, 128.6, 128.5, 127.9, 127.0, 93.1, 92.7, 50.5, 46.4, 39.4, 35.5, 21.23, 21.20, 16.3, 14.3. HRMS: m/z 350.9876, calculated for $C_{12}H_{15}$ ClINO 350.9887.

5-Chloro-2-ethyl-3,3-dimethylisoindolin-1-one (**6**) from 4-Chloro-N-ethyl-2-iodo-N-isopropylbenzamide. Compound 6 was prepared by following procedure A. White solid. Yield: 0.205 g (92%). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (s, 1H), 7.37 (dd, J = 8.0, 1.0 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 3.48 (q, J = 4.0 Hz, 2H), 1.46 (m, 6H), 1.28 (t, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 153.2, 137.7, 129.6, 128.5, 124.8, 121.3, 62.6, 34.1, 25.9, 14.7. HRMS: m/z 224.0833, calculated for C₁₂H₁₄ClNO + H⁺ 224.0842.

2-Bromo-N-ethyl-N-isopropylnicotinamide (Substrate for compound 7). White semisolid. Yield: 85%. ¹ H NMR (400 MHz, CDCl₃): δ 8.38–8.37 (m, 2H), 7.62–7.54 (m, 2H), 7.28–7.25 (m, 2H), 4.72–3.02 (m, 6H), 1.30–1.22 (m, 12H), 1.05–0.96 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 165.7, 149.64, 1.64.0, 147.2, 147.0, 136.5, 136.0, 133.6, 133.4, 122.6, 122.4, 50.6, 46.4, 39.1, 35.5, 21.3, 20.9, 20.4, 20.0, 16.3, 14.3. HRMS: m/z 270.0361, calculated for C₁₁H₁₅BrN₂O 270.0368.

6-Ethyl-7,7-dimethyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-one (7). Compound 7 was prepared by following procedure B. White semisolid. Yield: 0.143 g (75%). 1 H NMR (400 MHz, CDCl₃): δ 8.62 (dd, J = 4.8, 1.35 Hz, 1H), 8.02 (dd, J = 7.6, 1.35 Hz, 1H), 7.30–7.26 (m, 1H), 3.49 (q, J = 7.0 Hz, 2H), 1.48 (s, 6H), 1.27 (t, J = 7.3 Hz,

3H). 13 C NMR (100 MHz, CDCl₃): δ 169.7, 165.6, 152.1, 131.7, 124.5, 123.1, 63.9, 34.1, 24.3, 14.6. HRMS: m/z 191.1208, calculated for $\rm C_{11}H_{14}N_2O$ + $\rm H^+$ 191.1184.

N-Cyclohexyl-2-iodo-N-methylbenzamide (Substrate for **8**). *N*-Cyclohexyl-2-iodo-*N*-methylbenzamide was prepared using 2-iodo-benzoyl chloride and *N*-cyclohexyl-*N*-methylamine. Yellowish solid. Yield: 98%. ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.73 (m, 2H), 7.33–7.28 (m, 2H), 7.13–7.08 (m, 2H), 7.02–6.96 (m, 2H), 4.58–4.50 (m, 1H), 3.11–3.03 (m, 1H), 2.94 (s, 3H), 2.61 (s, 3H), 1.92–1.39 (m, 20H). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 170.3, 143.5, 143.4, 139.3, 139.1, 129.84, 129.82, 128.5 128.2, 126.8, 126.3, 92.5, 92.4, 58.5, 52.4, 31.0, 30.9, 30.7, 27.1, 25.7, 25.6, 25.4, 25.1. HRMS: m/z 343.0420, calculated for C₁₄H₁₈INO 343.0433.

2'-Methylspiro[cyclohexane-1,1'-isoindolin]-3'-one (8). Compound 8 was prepared by following procedure A. White semisolid. Yield: 202 mg (94%). 1 H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 3.69, 1H), 7.72 (d, J = 3.69, 1H), 7.45–7.37 (m, 2H), 2.96 (s, 3H), 1.94–1.82 (m, 8H), 1.38–1.36 (m, 2H). 13 C NMR (400 MHz, CDCl₃): δ 167.5, 150.6, 130.6, 127.8, 123.8, 123.4, 114.1, 64.4, 32.9, 24.7, 24.3, 22.4. LRMS: m/z 216.2, calculated for $C_{14}H_{17}ON + H^+$ 216.1.

4-Chloro-N-cyclohexyl-2-iodo-N-methylbenzamide (Substrate for 9 and 26). 4-Chloro-N-cyclohexyl-2-iodo-N-methylbenzamide was prepared using 4-chloro-2-iodobenzoyl chloride and N-cyclohexyl-N-methylamine. Yield: 91%. 1 H NMR (400 MHz, CDCl₃): δ 7.80 (dd, J = 12, 2 Hz, 2H), 7.33 (dt, J = 8, 2 Hz, 2H), 7.07 (q, J = 8 Hz, 2H), 2.96 (s, 3H), 2.64 (s, 3H), 1.96–0.99 (m, 22H). 13 C NMR (100 MHz, CDCl₃): δ 169.7, 169.5, 142.0, 138.8, 138.5, 134.7, 128.8, 128.6, 127.6, 127.0, 92.7, 92.5, 58.6, 52.6, 31.0, 30.9, 30.7, 29.7, 29.2, 27.2, 25.6, 25.5, 25.4, 25.1. HRMS: m/z 378.0131, calculated for C₁₄H₁₇ClINO + H $^+$ 378.0122.

6'-Chloro-2'-methylspiro[cyclohexane-1,1'-isoindolin]-3'-one (9) from 4-Chloro-N-cyclohexyl-2-iodo-N-methylbenzamide. Compound 9 was prepared by following procedure A. White solid. Yield: 232 mg (93%). 1 H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 12.0 Hz, 1H), 7.75 (t, J = 2.0 Hz, 1H), 7.43 (dd, J = 8.0, 2.0 Hz, 1H), 3.01 (s, 3H), 1.96–1.84 (m, 8H), 1.46–1.41 (m, 2H). 13 C NMR (100 MHz, CDCl₃): δ 176.8, 152.0, 136.8, 128.4, 124.9, 123.9, 111.8, 64.3, 32.7, 24.6, 24.3, 22.4. HRMS: m/z 250.1006, calculated for $C_{14}H_{16}CION + H^+$ 250.0999.

N,N-Diethyl-2-iodobenzamide (Substrate for 10). *N,N-*Diethyl-2-iodobenzamide was prepared using 2-iodobenzoyl chloride and diethylamine. Yield: 93%. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.06 Hz, 1H), 7.35 (t, J = 7.63 Hz, 1H), 7.18 (dd, J = 7.63 Hz, J = 1.64 Hz, 1H), 7.03 (dt, J = 7.73 Hz, J = 1.64 Hz, 1H), 3.91–3.75 (m, 1H), 3.35–3.21 (m, 1H), 3.13–3.09 (m, 2H), 1.27 (t, J = 7.14 Hz, 3H), 1.04 (t, J = 7.14 Hz, 3H). ¹³ C NMR (100 MHz, CDCl₃): δ 170.1, 142.9, 139.2, 129.9, 128.2 126.9, 92.8, 42.8, 38.9, 13.9, 12.5. LRMS: m/z 304.0, calculated for C₁₁H₁₄INO + H⁺ 304.0.

2-Ethyl-3-methylisoindolin-1-one (10) from N,N-Diethyl-2-iodobenzamide. Compound 10 was prepared by following procedure A. White solid. Yield: 45 mg (26%). ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 6.0 Hz, 1H), 7.44 (d, J = 4.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 4.56 (q, J = 6.0 Hz, 1H), 3.98–3.94 (m, 1H), 3.32–3.28 (m, 1H), 1.46 (d, J = 8.0 Hz, 3H), 1.25 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.7, 146.9, 131.3, 128.1, 126.8, 123.5, 121.8, 55.2, 34.6, 18.2, 13.8. LRMS: m/z 176.1, calculated for C₁₁H₁₃NO + H⁺ 176.1.

N-Benzyl-*N*-ethyl-2-iodobenzamide (Substrate for **11a,b**). *N*-Benzyl-*N*-ethyl-2-iodobenzamide was prepared using 2-iodobenzoyl chloride and *N*-benzyl-*N*-ethylamine. Yield: 95%. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (t, J = 7.19 Hz, 2H), 7.46 (d, J = 7.31 Hz, 2H), 7.39–7.22 (m, 10H), 7.14 (d, J = 7.15 Hz, 2H), 7.09–6.99 (m, 2H), 5.07 (d, J = 14.64 Hz, 1H), 4.51 (d, J = 14.64 Hz, 1H), 4.38–4.28 (m, 2H), 4.01–3.97 (m, 1H), 3.08–3.03 (m, 3H), 1.24 (t, J = 7.16 Hz, 3H), 1.01 (t, J = 7.11 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 170.6, 142.6, 142.3, 139.4, 139.2, 136.9, 136.3, 130.1, 130.0, 128.8, 128.7, 128.5, 128.4, 128.2, 127.7, 127.5, 127.3, 127.2, 127.1, 92.9, 92.6, 51.5, 46.7, 42.2, 39.2, 13.3, 11.8. HRMS: m/z 365.0261, calculated for C₁₆H₁₆INO 365.0277.

2-Ethyl-3-phenylisoindolin-1-one (11a) from N-Benzyl-N-ethyl-2-iodobenzamide. Procedure A was followed for the synthesis of 11a,b. A white solid was obtained, which was purified by column chromatography with hexane/EtOAc (8/2) on silica gel. This gave two fractions; first fraction, white solid 11a; second fraction, white solid 11b. Yield of 11a: 161 mg (68%). 1 H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 4.0 Hz, 1H), 7.47–7.41 (m, 2H), 7.38 (dd, J = 8.0, 3.0 Hz, 2H), 7.34–7.29 (m, 3H), 7.26–7.24 (m, 2H), 3.54–3.45 (m, 1H), 3.13–3.05 (m, 1H), 1.03 (t, J = 8.0 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ 167.6, 148.9, 138.6, 132.6, 130.7, 129.5, 128.50, 128.47, 126.2, 123.2, 122.6, 91.4, 34.3, 14.3. HRMS: m/z 238.1233 calculated for $C_{16}H_{15}NO + H^+$ 238.1232.

2-Benzyl-3-methylisoindolin-1-one (11b). Second fraction. Yield: 24 mg (10%). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 4.0 Hz, 1H), 7.45 (t, J = 6.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.28 (t, J = 8.0 Hz, 4H), 5.32 (d, J = 12.0 Hz, 1H), 4.37 (q, J = 4.0 Hz, 1H), 4.24, (d, J = 12.0 Hz, 1H), 1.41 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 147.0, 137.3, 131.7, 131.5, 128.7, 128.1, 128.0, 127.6, 123.9, 121.9, 55.0, 43.7, 18.0. HRMS: m/z 236.1073, calculated for C₁₆H₁₅NO - H $^+$ 236.1075.

2-lodo-N-(2-methoxybenzyl)-N-methylbenzamide (Substrate for 12). 2-Iodo-N-(2-methoxybenzyl)-N-methylbenzamide was prepared using 2-iodobenzoyl chloride and 1-(2-methoxyphenyl)-N-methylmethanamine. Yield: 95%. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 7.97 Hz, 2H), 7.47–7.45 (m, 1H), 7.39–7.35 (m, 1H), 7.32–7.26 (m, 2H), 7.23–7.21 (m, 3H), 7.11 (d, J = 7.20 Hz 1H), 7.06–7.00 (m, 2H), 6.97–6.90 (m, 2H), 6.88 (d, J = 8.20 Hz, 1H), 6.81 (d, J = 8.20 Hz, 1H), 4.85–4.77 (m, 2H), 4.34 (s, 2H), 3.84 (s, 3H), 3.74 (s, 3H), 3.03 (s, 3H), 2.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 170.8, 157.7, 157.3, 142.9, 142.6, 139.2, 139.1, 130.1, 130.03, 129.99, 128.9, 128.7, 128.5, 128.4, 128.1, 127.5, 127.2, 124.6, 124.0, 120.7, 120.5, 110.35, 110.31, 93.0, 92.3, 55.4, 55.1, 49.6, 44.7, 36.1, 32.6. HRMS: m/z 381.0210, calculated for C₁₆H₁₆INO₂ 381.0226.

3-(2-Methoxyphenyl)-2-methylisoindolin-1-one (12) from 2-lodo-N-(2-methoxybenzyl)-N-methylbenzamide. Compound 12 was prepared by following procedure A. White solid. Yield: 0.152 g (60%). 1 H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.0 Hz, 3H), 7.48 (t, J = 8.0 Hz, 2H), 7.41 (t, J = 8.0 Hz, 3H), 3.95 (s, 1H), 3.02 (s, 3H), 3.00 (s, 3H). 13 C NMR (100 MHz, CDCl₃) 171.0, 155.3, 151.7, 148.9, 143.3, 138.9, 133.8, 131.4, 126.8, 123.1, 119.0, 118.9, 112.4, 65.8, 39.8, 13.7. HRMS (APCI): m/z 254.1170, calculated for $C_{16}H_{15}NO_2 + H$ 253.1181.

2-lodo-N-methyl-N-(1-phenylethyl)benzamide (Substrate for 13). 2-Iodo-N-methyl-N-(1-phenylethyl)benzamide was prepared by using NaH and CH₃I. 2-Iodo-*N*-phenylethylbenzamide (598 mg, 1.7 mmol) was dissolved in dry DMF, to this was added NaH (280 mg, 7.0 mmol) portionwise at 0 °C, and the mixture was stirred for 30 min at this temperature under N2. Methyl iodide (0.65 mL, 10 mmol) was added dropwise at 0 °C under N2. After this, the reaction mixture was stirred at room temperature for 4 h. The resulting reaction mixture was slowly poured over ice and extracted with ethyl acetate (20 mL \times 3), and the extract was dried over Na2SO4 and concentrated under vacuum. The resulting yellowish oil was purified by column chromatography using hexane/ethyl acetate (8/2) on silica gel. The resulted product was obtained as a thick liquid which solidified on standing. Yield: 85%. ¹H NMR (400 MHz, CDCl₃): δ 7.89–7.79 (m, 1H), 7.51-7.25 (m, 6H), 7.22-7.02 (m, 2H), 6.24-4.73 (m, 1H), 2.94-2.45 (m 3H), 1.70-1.55 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 170.6, 143.0, 142.9, 140.2, 140.1, 139.5, 139.2, 130.1, 130.01, 128.7, 128.5, 128.2, 127.94, 127.87, 127.7, 127.5, 126.9, 126.7, 126.2, 93.3, 92.7, 56.72, 56.67, 50.42, 29.4, 27.7, 18.4. HRMS: m/z 365.0267, calculated for C₁₆H₁₆INO 365.0277.

2,3-Dimethyl-3-phenylisoindolin-1-one (*13*). Compound 13 was prepared by following procedure A. White semisolid. Yield: 166 mg (70%). 1 H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 6.51, 1H), 7.41 (t, J = 6.72, 2H), 7.32–7.27 (m, 3H), 7.17–7.13 (m, 3H), 2.87 (s, 3H), 1.84 (s, 3H). 13 C NMR (400 MHz, CDCl₃): δ 168.2, 151.9, 139.9, 131.9, 130.6, 128.9, 128.1, 127.9, 126.1, 123.7, 121.8, 67.2, 24.7, 22.5. HRMS: m/z 238.1248, calculated for $C_{16}H_{15}ON + H^+$ 238.1232.

2-lodo-N-isopropyl-N-phenylbenzamide (Substrate for 14). 2-Iodo-N-isopropyl-N-phenylbenzamide was prepared using 2-iodobenzoyl chloride and N-benzyl-N-isopropylamine. Yield: 90%. $^1{\rm H}$ NMR (400 MHz, CDCl₃): δ 7.57 (d, J=7.9 Hz, 1H), 7.23–7.21 (m, SH), 7.04 (t, J=7.4 Hz, 1H), 6.97 (dd, J=7.4 Hz, J=1.5 Hz, 1H), 6.74 (dt, J=7.9 Hz, J=1.5 Hz, 1H), 5.21–5.12 (m, 1H), 1.20 (d, J=6.7 Hz, 6H). $^{13}{\rm C}$ NMR (100 MHz, CDCl₃): δ 169.8, 142.9, 138.9, 137.9, 130.4, 129.3, 128.5, 128.2, 128.0, 127.1, 93.6, 46.9, 20.9. HRMS: m/z 366.0365, calculated for C₁₆H₁₆INO + H $^+$ 366.0355.

3,3-Dimethyl-2-phenylisoindolin-1-one (14a). Following procedure A, a white solid was obtained, which was purified by column chromatography hexane/EtOAc (8/2) on silica gel. This gave two fractions: first fraction, white solid 14a; second fraction, white solid 14b. Yield for 14a: 63 mg (27%). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.49 (m, 5H), 7.26 (d, J = 7.4 Hz, 2H), 1.50 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.7, 151.7, 135.8, 132.0, 130.5, 129.7, 129.4, 128.2, 128.1, 124.3, 120.9, 64.5, 26.8. LRMS: m/z 238.2, calculated for $C_{16}H_{15}NO + H^+$ 238.1.

5-Isopropylphenanthridin-6(5H)-one (*14b*). Second fraction. White solid. Yield for 14b: 152 mg (64%). ¹H NMR (400 MHz, CDCl₃): δ 8.50 (d, J = 8.0 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.79 (t, J = 7.8 Hz, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.27 (t, J = 7.4 Hz, 1H), 5.62–5.31 (m, 1H), 1.69 (d, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 162.0, 137.3, 133.5, 132.3, 128.9, 128.6, 127.8, 126.4, 123.6, 122.1, 121.4, 120.1, 115.9, 47.4, 19.9. LRMS: m/z 238.2, calculated for C₁₆H₁₅NO + H⁺ 238.1.

4-Chloro-2-iodo-N,N-diisopropylbenzamide (Substrate for 15). 4-Chloro-2-iodo-N,N-diisopropylbenzamide was prepared using 4-chloro-2-iodobenzoyl chloride and diisopropylamine. Yield: 90%. 1 H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 4.0 Hz, 1H), 7.32 (dd, J = 8.0, 2.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 3.45–3.56 (m, 2H), 1.56 (d, J = 8.0 Hz, 3H), 1.53 (d, J = 8.0 Hz, 3H), 1.24 (d, J = 4.0 Hz, 3H), 1.04 (d, J = 8.0 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ 169.0, 142.7, 138.7, 134.2, 128.6, 126.5, 92.4, 51.3, 46.1, 20.8, 20.0. HRMS: m/z 366.0146, calculated for C_{13} H₁₇INOCl + H $^+$ 366.0122.

5-Chloro-2-isopropyl-3,3-dimethylisoindolin-1-one (15). Compound 15 was prepared by following procedure A. White semisolid. Yield: 228 mg (96%). 1 H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.0 Hz, 1H), 7.35 (dd, J = 2.0, 8.0 Hz, 1H), 7.30 (d, J = 3.0 Hz, 1H), 3.63–3.56 (m, 1H) 1.52 (d, J = 8.0 Hz, 6H), 1.44 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 166.2, 152.8, 137.5, 130.5, 128.5, 124.6, 121.2, 63.1, 44.7, 25.3, 20.4. HRMS: m/z 238.1017, calculated for C_{13} H₁₆NOCl + H $^+$ 238.0999.

2-Bromo-N,N-diisopropyl-3-nitrobenzamide (Substrate for **16**). 2-Bromo-N,N-diisopropyl-3-nitrobenzamide was prepared using 2-bromo-3-nitrobenzoyl chloride and diisopropylamine. Yellowish solid. Yield: 98%. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.45 Hz, 1H), 7.47 (t, J = 7.76 Hz, 1H), 7.34 (d, J = 7.07 Hz, 1H), 3.57–3.47 (m, 2H), 1.55 (t, J = 6.33, 6H), 1.24 (d, J = 6.69 Hz, 3H), 1.07 (d, J = 6.69 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 150.8, 143.1, 129.5, 128.7, 124.6, 111.2, 51.4, 46.4, 20.8, 20.7, 20.5, 19.9. HRMS: m/z 328.0406, calculated for C₁₃H₁₇BrN₂O₃ 328.0423.

2-Isopropyl-3,3-dimethyl-4-nitroisoindolin-1-one (16) from 2-Bromo-N,N-diisopropyl-3-nitrobenzamide. Compound 16 was prepared by following procedure B. Yellowish semisolid. Yield: 109 mg (44%). 1 H NMR (400 MHz, CDCl₃): δ 8.25 (d, J = 8.0, 1H), 8.12 (d, J = 7.40, 1H), 7.61 (t, J = 8.0, 1H), 3.72–3.66 (m, 1H), 1.68 (s, 6H), 1.57 (d, J = 3.42, 6H). 13 C NMR (400 MHz, CDCl₃): δ 182.1, 143.6, 140.4, 140.3, 129.5, 127.8, 123.5, 66.2, 45.0, 22.5, 20.3. HRMS: m/z 248.1161, calculated for $C_{13}H_{16}N_2O_3$ 248.1161.

2-Bromo-N,N-diisopropyl-4,5-dimethoxybenzamide (Substrate for 17). 2-Bromo-N,N-diisopropyl-4,5-dimethoxybenzamide was prepared from 2-bromo-4,5-dimethoxybenzoyl chloride and diisopropylamine. Yield: 89%. ¹H NMR (400 MHz, CDCl₃): δ 6.94 (s, 1H), 6.61 (s, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.62–3.56 (m, 1H), 3.49–3.42 (m, 1H), 1.51 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.8 Hz, 3H), 1.01 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 149.3, 148.6, 132.2, 115.4, 109.3, 109.0, 56.19, 56.17, 51.2, 45.9, 21.0, 20.7, 20.5, 20.0. LRMS: m/z 344.0, calculated for C₁₅H₂₂BrNO₃ + H⁺ 344.0.

2-Isopropyl-5,6-dimethoxy-3,3-dimethylisoindolin-1-one (17). Compound 17 was prepared by following procedure B; the reaction mixture was heated for 12 h. White semisolid. Yield: 177 mg (67%). 1 H NMR (400 MHz, CDCl₃): δ 7.23 (s, 1H), 6.75 (s, 1H), 3.93 (t, 3H), 3.90 (t, 3H), 3.64–3.57 (m, 1H), 1.52 (d, J = 8.0 Hz, 6H), 1.43 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 167.4, 152.4, 149.5, 144.8, 124.2, 105.0, 102.9, 62.9, 56.23, 56.20, 44.6, 25.6, 20.58. HRMS: m/z 263.1493, calculated for C_{15} H₂₁NO₃ 263.1521.

2-lodo-N,N-diisopropyl-3-methylbenzamide (Substrate for **18a,b**). 2-Iodo-N,N-diisopropyl-3-methylbenzamide was prepared using 2-iodo-3-methylbenzoyl chloride and diisopropylamine. White solid. Yield: 90%. ¹H NMR (400 MHz, CDCl₃): δ 7.21 (t, J = 7.4 Hz, 1H), 7.14(d, J = 6.7 Hz, 1H), 6.89 (d, J = 6.9 Hz, 1H), 3.61–3.55 (m, 1H), 3.53–3.46 (m, 1H), 2.5 (s, 3H), 1.59 (d, J = 6.8 Hz, 3H), 1.55 (d, J = 6.8 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 1.04 (d, J = 6.7 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 145.3, 142.6, 128.9, 128.2, 123.0, 99.1, 51.1, 45.9, 28.8, 20.74, 20.70, 20.68, 19.9. GCMS: m/z 345.0, calculated for $C_{14}H_{20}$ INO 345.1.

2-Isopropyl-3,3,4-trimethylisoindolin-1-one (18a). Following procedure A, a white solid was obtained which was purified by column chromatography with hexane/EtOAc (8/2) on silica gel. This gave two fractions: first fraction, white solid 18a; second fraction, white solid 18b. Yield: 174 mg (80%). ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.0 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 3.66–3.59 (m, 1H), 2.47 (s, 3H), 1.55 (d, J = 8.0 Hz, 6H), 1.53 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 148.1, 133.7, 132.6, 131.5, 127.9, 120.9, 64.2, 44.3, 22.9, 20.5, 18.7. HRMS: m/z 218.1544, calculated for $C_{14}H_{19}ON + H^+$ 218.1545.

2-Isopropyl-3,3,6-trimethylisoindolin-1-one (18b). Second fraction. White solid 18b. Yield: 39 mg (18%). 1 H NMR (400 MHz, CDCl₃): δ 7.56 (s, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 3.65–3.58 (m, 1H), 2.40 (s, 3H), 1.53 (d, J = 8.0 Hz, 6H), 1.44 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 167.4, 137.8, 132.2, 131.4, 123.4, 120.3, 115.6, 55.6, 44.6, 25.5, 21.3, 20.5. HRMS: m/z 218.1526, calculated for C₁₄H₁₉ON+ H $^+$ 218.1545.

2-Bromo-N,N-diisopropyl-5-methoxybenzamide (Substrate for 19). 2-Bromo-N,N-diisopropyl-5-methoxybenzamide was prepared using 2-bromo-5-methoxybenzoyl chloride and diisopropylamine. White solid. Yield: 85%. 1 H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 8.7 Hz, 1H), 6.72 (dd, J = 8.8, 2.9 Hz, 1H), 6.68 (d, J = 2.9 Hz, 1H), 3.75 (s, 3H), 3.64–3.54 (m, 1H), 3.52–3.43 (m, 1H), 1.55–1.52 (m, 6H), 1.21 (d, J = 6.6 Hz, 3H), 1.04 (d, J = 6.67 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ 167.9, 159.0, 140.8, 133.6, 115.6, 111.9, 109.2, 55.6, 51.15, 45.97, 20.9, 20.7, 20.5, 20.0. LRMS: m/z: 314.2, calculated for C₁₄H₂₀BrNO₂ + H⁺ 314.1.

2-Isopropyl-6-methoxy-3,3-dimethylisoindolin-1-one (19a) and 2-Isopropyl-4-methoxy-3,3-dimethylisoindolin-1-one (19b) from 2-Bromo-N,N-diisopropyl-5-methoxybenzamide. Procedure B was followed. A white solid was obtained, which was purified by column chromatography with hexane/EtOAc (8/2) on silica gel. This gave a mixture of 19a and 19b. White solid. Yield: 158 mg (68%). 1 H NMR (400 MHz, CDCl₃): δ 7.38–7.32 (m, 2H), 7.20 (d, J = 12.0 Hz, 2H), 7.04 (dd, J = 4.0, 8.0 Hz, 1H), 6.95 (dd, J = 4.0, 8.0 Hz, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 3.65–3.58 (m, 2H), 1.54 (m, 6H), 1.52 (d, J = 4.0 Hz, 12H), 1.43 (s, 6H). 13 C NMR (100 MHz, CDCl₃) δ.157.2, 154.2, 135.0, 134.1, 134.0, 133.8, 129.3, 121.5, 119.5, 115.3, 112.9, 105.92, 105.9, 63.4, 63.0, 55.7, 55.4, 44.6, 44.2, 25.5, 22.8, 20.5. HRMS: m/z 233.1398, calculated for $C_{14}H_{19}O_{2}N$ 233.1416.

1-Bromo-N,N-diisopropyl-2-naphthamide (Substrate for **20**). This substrate was prepared by using 2-bromonaphthoyl chloride and diisopropylamine. White solid. Yield: 89%. ¹H NMR (400 MHz, CDCl₃): δ 8.29 (d, J = 8.4 Hz, 1H), 7.82 (dd, J = 8.4 Hz, J = 2.2 Hz, 2H), 7.61 (td, J = 7.1 Hz, J = 1.2 Hz, 1H), 7.55–7.51 (m, 1H), 7.26 (d, J = 8.4 Hz, 1H), 3.68–3.60 (m, 1H), 3.58–3.49 (m, 1H), 1.64 (d, J = 6.8 Hz, 3H), 1.61 (d, J = 6.8 Hz, 3H), 1.21 (d, J = 6.6 Hz, 3H), 1.05 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 138.0, 133.7, 132.1, 128.5, 128.2, 127.9, 127.3, 127.0, 123.5, 118.9, 51.2, 46.0, 20.8, 20.72, 20.70, 20.2. HRMS: m/z 334.0781, calculated for C₁₇H₂₀BrNO + H⁺ 334.0807.

2-Isopropyl-3,3-dimethyl-2,3-dihydro-1H-benzo[f]isoindol-1-one (20a) from 3-Bromo-N,N-diisopropyl-2-naphthamide. Following procedure B, a white solid was obtained, which was purified by column chromatography with hexane/EtOAc (8/2) on silica gel. This gave two fractions: first fraction, white solid 20a; second fraction, white solid 20b. Yield obtained for 20a: 152 mg (60%). ¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.74 (s, 1H), 7.56–7.48 (m, 2H), 3.71–3.64 (m, 1H), 1.59 (d, J = 8.0 Hz, 6H), 1.56 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 146.9, 135.1, 133.1, 130.3, 129.5, 128.0, 127.3, 126.1, 123.3, 119.4, 63.4, 44.8, 26.2, 20.6. HRMS: m/z 253.1459, calculated for $C_{17}H_{19}$ ON 253.1467.

2-Isopropyl-1,1-dimethyl-1H-benzo[e]isoindol-3(2H)-one (20b). Yield: 86 mg (34%). 1 H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.87 (q, J = 8.0 Hz, 2H), 7.63–7.56 (m, 2H), 3.80–3.72 (m, 1H), 1.72 (s, 6H), 1.61 (d, J = 8.0 Hz, 6H). 13 C NMR (100 MHz, CDCl₃): δ 167.4, 147.7, 135.8, 130.1, 130.0, 129.3, 126.9, 126.7, 126.69, 123.7, 119.8, 64.4, 44.5, 24.8, 20.7. HRMS: m/z 253.1446, calculated for C₁₇H₁₉ON 253.1467.

N,N-Diisopropyl-2-iodoferrocenecarboxamide (Substrate for **21**). This compound was prepared by following a literature procedure. Yield: 95%. ¹H NMR (400 MHz, CDCl₃): δ 4.42 (s, 1H), 4.34 (s, 5H), 4.27 (s, 1H), 4.16 (s, 1H), 3.61 (s, 1H), 3.40 (s, 1H), 1.49 (s, 6H), 1.09 (s, 3H), 0.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 73.6. 72.8, 67.6, 66.8, 50.8, 45.9, 40.5, 20.8. LRMS: m/z 440.0, calculated for C₁₇H₂₂ONIFe + H⁺ 440.0.

Ferrocenylisoindolinone (21). Compound 21 was prepared by following procedure A. Orange solid. Yield: 300 mg (96%). ¹H NMR (400 MHz, CDCl₃): δ 4.59 (s, 1H), 4.25–4.20 (m, 7H), 3.48 (s, 1H), 1.72 (s, 3H), 1.51 (d, J = 4.0 Hz, 3H), 1.47 (d, J = 4.0 Hz, 3H), 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 104.3, 70.7, 69.6, 60.7, 60.1, 45.0, 28.7, 27.2, 20.7, 20.6. HRMS: m/z 311.0963, calculated for C₁₇H₂₁ONFe 311.0973.

2-Bromo-N,N-diisopropylnicotinamide (Substrate for 22). 2-Bromo-N,N-diisopropylnicotinamide was prepared using 2-bromonicotinoyl chloride and diisopropylamine. White solid. Yield: 95%. 1 H NMR (400 MHz, CDCl₃): δ 8.37 (s, 1H), 7.53 (dd, J = 7.52 Hz, J = 1.71 Hz, 1H), 7.27–7.24 (m, 1H), 3.58–3.47 (m, 2H), 1.54 (t, J = 6.5 Hz, 6H), 1.23 (d, J = 6.57 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ 165.5, 149.3, 147.0, 135.5, 134.2, 122.6, 51.3, 46.2, 20.9, 20.6, 20.5, 19.9. HRMS: m/z 284.0507, calculated for $C_{12}H_{17}BrN_2O$ 284.0524.

6-Isopropyl-7,7-dimethyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-one (22). Compound 22 was prepared by following procedure B. Yellowish semisolid. Yield: 162 mg (79%). 1 H NMR (400 MHz, CDCl₃): δ 8.66 (dd, J = 5.0, 1.4 Hz, 1H), 8.03 (dd, J = 7.6, 1.4 Hz, 1H), 7.34–7.31 (m, 1H), 3.75–3.64 (m, 1H), 1.55 (d, J = 6.8 Hz, 6H), 1.52 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 169.4, 165.4, 151.9, 131.5, 125.5, 123.1, 64.5, 44.9, 23.8, 20.5. HRMS: m/z 205.1357, calculated for $C_{12}H_{16}N_2O+H^+$ 205.1341.

Typical Procedure for the Synthesis of 5-Phenylisoindolin-1ones. 2-Isopropyl-3,3-dimethyl-5-phenylisoindolin-1-one (23) from 4-Chloro-2-iodo-N,N-diisopropylbenzamide (Procedure C). In a 15 mL capacity sealed tube containing 5 mL of benzene, 4chloro-2-iodo-N,N-diisopropylbenzamide (511 mg, 1.4 mmol), AMVN (35 mg, 0.14 mmol, 10 mol %), and potassium tert-butoxide (818 mg, 7.3 mmol) were heated to 100 °C. The progress of the reaction was monitored by TLC. The reaction mixture was refluxed for 28 h at 100 °C. After completion of the reaction, water (100 mL) was added to the resulting brownish white solid and the mixture was stirred for 30 min. The resulting solution was extracted with ethyl acetate (20 mL \times 3), and the extract was dried over Na₂SO₄. The organic layer was concentrated on a rotary evaporator under vacuum. The resulting crude reaction mixture was purified by column chromatography using hexane/ethyl acetate (8/2) on silica to give the desired 2-isopropyl-3,3-dimethyl-5-phenylisoindolin-1-one (23). White solid. Yield: 340 mg (87%). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.0 Hz, 1H), 7.62–7.58 (m, 3H), 7.50 (s, 1H), 7.45 (t, J =8.0 Hz, 2H), 7.37 (t, J = 8.0 Hz, 1H), 3.69–3.62 (m, 1H), 1.56 (d, J =8.0 Hz, 6H), 1.51 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 167.1, 152.0, 144.7, 140.8, 130.9, 128.9, 127.9, 127.5, 127.2, 123.6, 119.4, 63.3, 44.7, 25.6, 20.5. HRMS: m/z 280.1715, calculated for $C_{19}H_{21}ON + H^+$ 280.1701.

2-Methyl-3,3-dimethyl-5-phenylisoindolin-1-one (24) from 4-Chloro-N-methyl-2-iodo-N-isopropylbenzamide. Compound 24 was prepared by following procedure C. White solid. Yield: 216 mg (86%). 1 H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.0 Hz, 1H), 7.64–7.57 (s, 4H), 7.46 (t, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 1H), 3.04 (s, 3H), 1.49 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 178.4, 152.2, 147.9, 128.9, 128.0, 127.5, 127.3, 123.9, 119.5, 100.0, 99.1, 62.2, 25.0, 24.0. HRMS: m/z 251.1295, calculated for C₁₇H₁₇NO 251.1310.

2-Ethyl-3,3-dimethyl-5-phenylisoindolin-1-one (25) from 4-Chloro-N-ethyl-2-iodo-N-isopropylbenzamide. Compound 25 was prepared by following procedure C. White solid. Yield: 236 mg, 89%. 1 H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 8.0 Hz, 3H), 7.54 (s, 1H), 7.45 (t, J = 6.0 Hz, 2H), 7.38 (t, J = 6.0 Hz, 1H), 3.53 (t, J = 6.0 Hz, 2H), 1.52 (s, 6H), 1.32 (t, J = 6.0 Hz, 3H). 1 C NMR (100 MHz, CDCl₃): δ 167.2, 152.3, 144.8, 140.7, 130.0, 128.9, 128.0, 127.5, 127.3, 123.8, 119.4, 62.9, 34.1, 26.1, 14.8. HRMS: m/z 266.1553, calculated for $C_{18}H_{19}$ NO + H^+ 266.1545.

2'-Methyl-6'-phenylspiro[cyclohexane-1,1'-isoindolin]-3'-one (26) from 4-Chloro-N-cyclohexyl-2-iodo-N-methylbenzamide. Compound 26 was prepared by following procedure C. White solid. Yield: 215 mg (86%). 1 H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 8.0 Hz, 2H), 7.65 (dd, J = 8.0, 2.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 8.0 Hz, 2H), 7.39 (t, J = 8.0 Hz, 1H), 3.05 (s, 3H), 2.01–1.88 (s, 8H), 1.52–1.47 (m, 2H). 13 C NMR (100 MHz, CDCl₃): δ 175.5, 151.3, 144.0, 130.6, 129.0, 127.9, 127.6, 127.3, 124.0, 122.4, 100.0, 64.4, 32.9, 24.8, 24.3, 22.6. HRMS: m/z 291.1611, calculated for $C_{20}H_{21}$ NO 291.1623.

2-Chloro-N,N-diisopropyl-5-nitrobenzamide. 1 H NMR (400 MHz, CDCl₃): δ 8.13 (dd, J = 8.0, 2.0 Hz, 1H), 8.06 (d, J = 2.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 3.59–3.48 (m, 2H), 1.55 (dd, J = 8.0, 2.0 Hz, 6H), 1.22 (d, J = 8.0 Hz, 1H), 1.10 (d, J = 8.0 Hz, 1H). 13 C NMR (100 MHz, CDCl₃): δ 164.9, 146.7, 139.2, 137.2, 130.9, 124.2, 121.9, 51.5, 46.4, 20.5, 20.1. HRMS: 284.0904, calculated for $C_{13}H_{17}CIN_2O_3$ 284.0928.

2-Hydroxy-N,N-diisopropyl-5-nitrobenzamide. This compound was prepared by following procedure B; a white solid was obtained. 1 H NMR (400 MHz, CDCl₃): δ 8.15 (dd, J = 8.0, 2.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 3.88 (s, 2H), 1.40 (d, J = 8.0 Hz, 12H). HRMS: m/z 267.1323, calculated for $C_{13}H_{18}N_2O_4 + H^+$ 267.1345.

ASSOCIATED CONTENT

Supporting Information

Tables, figures, and CIF files giving details for the optimization of reaction conditions, mechanistic details, NMR spectra, HRMS spectra of unknown compounds, and crystallographic data (CCDC file 968215 for 21, 968216 for 23, 968217 for 1). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail for S.K.: sangitkumar@iiserb.ac.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.K. thanks the DST New Delhi, DRDO New Delhi, DAE-BRNS Mumbai, and IISER Bhopal for generous funding. A.Y. acknowledges the UGC-CSIR for a fellowship. S.K. acknowledges Dr. Sanjit Konar and Ms. Anusha Upadhyay for single-crystal data collection and C. D. Prasad for proofreading.

■ REFERENCES

- (1) Intermolecular KO^tBu-mediated carbon-carbon coupling: (a) Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 4673. (b) Deng, G.; Ueda, K.; Yanagisawa, S.; Itami, K.; Li, C.-J. Chem. Eur. J. 2009, 15, 333. (c) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X.-Y.; Huang, K.; Zheng, S.-F.; Li, B.-J.; Shi, Z.-J. Nat. Chem. 2010, 2, 1044. (d) Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.; Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737. (e) Shirakawa, E.; Itoh, K.-i.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537. (f) Sun, C.-L.; Gu, Y.-F.; Wang, B.; Shi, Z.-J. Chem. Eur. J. 2011, 17, 10844. (g) Sun, C.-L.; Gu, Y.-F.; Huang, W.-P.; Shi, Z.-J. Chem. Commun. 2011, 47, 9813-9815. (h) Shirakawa, E.; Zhang, X.; Hayashi, T. Angew. Chem., Int. Ed. 2011, 50, 4671. (i) Wu, Y.; Wong, S. M.; Mao, F.; Chan, T. L.; Kwong, F. Y. Org. Lett. 2012, 14, 5306. (j) Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542. (k) Chan, T. L.; Wu, Y.; Choy, P. Y.; Kwong, F. Y. Chem. Eur. J. 2013, 19, 15802. (2) Intramolecular KO^tBu mediated C-C coupling: (a) Bajracharya, G. B.; Daugulis, O. Org. Lett. 2008, 10, 4625. (b) Roman, D. S.; Takahashi, Y.; Charette, A. B. Org. Lett. 2011, 13, 3242. (c) Rueping, M.; Leiendecker, M.; Das, A.; Poisson, T.; Bui, L. Chem. Commun. 2011, 47, 10629. (d) Bhakuni, B. S.; Kumar, A.; Balkrishna, S. J.; Sheikh, J. A.; Konar, S.; Kumar, S. Org. Lett. 2012, 14, 2838. (e) Bhakuni, B. S.; Shrimali, K.; Kumar, A.; Kumar, S. Org. Synth. 2013, 90, 164 (Collect. Vol.). (f) De, S.; Ghosh, S.; Bhunia, S.; Sheikh, J. A.; Bisai, A. Org. Lett. 2012, 14, 4466. (g) Wu, Y.; Wong, S. M.; Mao, F.; Chan, T. L.; Kwong, F. Y. Org. Lett. 2012, 14, 5306. (h) Tanimoro, K.; Ueno, M.; Takeda, K.; Kirihata, M.; Tanimori, S. J. Org. Chem. 2012, 77, 7844.
- (3) Intermolecular KO'Bu-mediated biaryl coupling: (a) Yong, G. P.; She, W. L.; Zhang, Y. M.; Li, Y. Z. Chem. Commun. 2011, 47, 11766. (b) Chen, W. C.; Hsu, Y. C.; Shih, W. C.; Lee, C. Y.; Chuang, W. H.; Tsai, Y. F.; Chen, P. P.; Ong, T. G. Chem. Commun. 2012, 48, 6702. (c) Bhakuni, B. S.; Yadav, A.; Kumar, S.; Kumar, S. New J. Chem. 2013, 38, 827. (d) Zhao, H.; Shien, J.; Guo, J.; Yeand, R.; Zeng, H. Chem. Commun. 2013, 49, 2323. (e) Liu, W.; Tian, F.; Wang, X.; Yu, H.; Bi, Y. Chem. Commun. 2013, 49, 2983. (f) Buden, M. E.; Guastavino, J. F.; Rossi, R. A. Org. Lett. 2013, 15, 1174. (g) Cheng, Y.; Gu, X.; Li, P. Org. Lett. 2013, 15, 2664.
- (4) Reviews on radical chain reactions for carbon—carbon coupling reactions: (a) Rossi, R. A.; Pierini, A. B.; Penenory, A. B. Chem. Rev. 2003, 103, 71. (b) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2011, 50, 5018. (c) Yanagisawa, S.; Itami, K. ChemCatChem 2011, 3, 827.
- (5) During the preparation of our paper, Ni- or 1,10-phenanthroline-catalyzed synthesis of symmetrical isoindolinones appeared: Wertjes, W. C.; Wolfe, L. C.; Waller, P. J.; Kalyani, D. Org. Lett. 2013, 15, 5986. Nonetheless, the presented methodology is mild and regioselective and has a broader substrate scope.
- (6) (a) Lippmann, W. U.S. Patent 4267189, 1981; Chem. Abstr.
 1981, 95, 61988m. (b) Ferland, J.-M.; Demerson, C. A.; Humber, L. G. Can. J. Chem. 1985, 63, 361. (c) Taylor, E. C.; Zhou, P.; Jenning, L. D.; Mao, Z.; Hu, B.; Jun, J.-G. Tetrahedron Lett. 1997, 38, 521.
- (7) Grignard/lithiation methods Tb-e,gh and reduction of phthalaimidinines: A.f. (a) Brewster, J. H.; Fusco, A. M.; Carosino, L. E.; Corman, B. G. J. Org. Chem. 1963, 28, 498. (b) Heidenbluth, V. K.; Tonjes, H.; Scheffier, R. J. Prakt. Chem. 1965, 30, 204. (c) Watanabe, H.; Mao, C.-L.; Barnish, I. T.; Hauser, C. R. J. Org. Chem. 1969, 34, 919. (d) Ang, W. S.; Halton, B. B. Aust. J. Chem. 1971, 24, 851. (e) Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 1188. (f) Bernhard, H. O.; Reed, J. N.; Snieckus, V. J. Org. Chem. 1977, 42, 1093. (g) Milewska, M. J.; Bytner, T.; Polonski, T. Synthesis 1996, 1485. (h) Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron 1997, 53, 10313. (i) Couture, A.; Deniau, E.; Ionescu, D.; Grandclaudon, P. Tetrahedron. Lett. 1998, 39, 2319.
- (8) (a) Mori, M.; Chiba, K.; Ban, Y. J. Org. Chem. 1978, 43, 1684. (b) Wilkinson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Organometallic Chemistry, 1st ed.; Pergamon: Oxford, U.K., 1982; Vol. 1. (c) Larock, R. C.; Liu, C.-L.; Lau, H. H.; Varaprath, S. Tetrahedron

- Lett. 1984, 25, 4459. (d) Kondo, Y.; Shiga, F.; Murata, N.; Sakamoto, T.; Yamanaka, H. Tetrahedron 1994, 50, 11803. (e) Koseki, Y.; Kusano, S.; Sakata, H.; Nagasaka, T. Tetrahedron Lett. 1999, 40, 2169. (f) Kundu, N. G.; Khan, M. W.; Mukhopadhyay, R. Tetrahedron 1999, 55, 12361. (g) Kundu, N. G.; Khan, M. W. Tetrahedron 2000, 56, 4777. (h) Lu, C.; Dubrovisky, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 8648.
- (9) Beak, P.; Kerrick, S. T.; Gallagher, D. J. J. Am. Chem. Soc. 1993, 115, 10628.
- (10) Synthesis of oxindoles by the coupling of an activated C-H bond with an aniline ring: (a) Beckwith, A. L. J.; Bowry, V. W.; Bowman, W. R.; Mann, E.; Parr, J.; Storey, J. M. D. Angew. Chem., Int. Ed. 2004, 43, 95. (b) Jia, Y. X.; Kündig, E. P. Angew. Chem., Int. Ed. 2009, 48, 1636. (c) Jia, Y. X.; Katayev, D.; Bernardinelli, G.; Siedel, T. M.; Kündig, E. P. Chem. Eur. J. 2010, 16, 6300. (d) Liu, C.; Liu, D.; Zhang, W.; Zhou, L.; Lei, A. Org. Lett. 2013, 15, 6166. (e) More references on oxindole synthesis by C-H functionalization: Dey, C.; Larionov, E.; Kündig, E. P. Org. Biomol. Chem. 2013, 11, 6734.
- (11) References on N,N-diisopropylamide as a directing group in ortho metalation: (a) Snieckus, V. Chem. Rev. 1990, 90, 879–933. (b) Tsukazaki, M.; Roglans, A.; Chapell, B. J.; Taylor, N. J.; Snieckus, V. J. Am. Chem. Soc. 1996, 118, 685. (c) Laufer, R. S.; Veith, U.; Taylor, N. J.; Snieckus, V. Org. Lett. 2000, 2, 629. (d) Kumar, S.; Singh, H. B.; Wolmershäuser, G. Organometallics 2006, 25, 382. (e) Kumar, S.; Helt, J.-C. P.; Autschbach, J.; Detty, M. R. Organometallics 2009, 28, 3426.
- (12) Rousseaux, S.; Gorelsky, S. I.; Chung, B. K. W.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 10692.
- (13) Our earlier work on 2-halobenzamides: (a) Balkrishna, S. J; Bhakuni, B. S.; Chopra, D.; Kumar, S. Org. Lett. 2010, 12, 5394. (b) Balkrishna, S. J.; Bhakuni, B. S.; Kumar, S. Tetrahedron 2011, 67, 9565. (c) Bhakuni, B. S.; Balkrishna, S. J.; Kumar, A.; Kumar, S. Tetrahedron Lett. 2012, 53, 1354. (d) For biaryl coupling reactions with 2-halobenzamides, see refs 2d,e and 3c.
- (14) X-ray-quality crystals were obtained by crystallization using $CH_2Cl_2/Et_2O/hexane$ solvents.
- (15) (a) Deprez, P.; Guillaume, J.; Becker, R.; Corbier, A.; Didierlaurent, S.; Fortin, M.; Frechet, D.; Hamon, G.; Heckmann, B.; Heitsch, H.; Kleemann, H. W.; Vevert, J. P.; Vincent, J. C.; Wagner, A.; Zhang, J. D. J. Med. Chem. 1995, 38, 2357. (b) Markham, A.; Goa, K. L. Drugs 1997, 54, 299. (c) James, C. A.; Snieckus, V. Tetrahedron Lett. 1997, 38, 8149. (d) Sharpe, M.; Jarvis, B.; Goa, K. L. Drugs 2001, 61, 1501
- (16) If the reaction was stopped after 4–6 h, only 10–15% of biarylindolinone 23 was observed when reactions were carried out in benzene and in the presence of excess of KO'Bu. It is important to heat the reaction mixture for a longer period of time in the presence of excess KO'Bu.
- (17) Electron transfer reactions of vitamin E and related phenols in radical chain reactions related to antioxidant functions: (a) Malmström, J.; Jonsson, M.; Cotgreave, I. A.; Hammarström, L.; Sjödin, M.; Engman, L. J. Am. Chem. Soc. 2001, 123, 3434. (b) Shanks, D.; Amorati, R.; Fumo, M. G.; Pedulli, G. F.; Valgimigli, L.; Engman, L. J. Org. Chem. 2006, 71, 1033. (c) Amorati, R.; Valgimigli, L.; Dinér, P.; Bakhtiari, K.; Saeedi, M.; Engman, L. Chem. Eur. J. 2013, 19, 7513. (d) Singh, V. P.; Poon, J.-f.; Engman, L. Org. Lett. 2013, 15, 6274.
 - (18) Fabrycy, A.; Kosmider, A. Rocz. Chem. 1973, 47, 937.
- (19) Bailey, D. M.; Grazia, D.; George, C. J. Org. Chem. 1970, 35, 4093.
- (20) Campbell, J. B.; Dedinas, R. F.; Trumbower-Walsh, S. A. J. Org. Chem. 1996, 61, 6205.
- (21) Kundu, N. G.; Khan, M. W. Tetrahedron 1969, 6, 475.
- (22) Mao, C.-Z.; Barnish, I. T.; Charles, R. J. Heterocycl. Chem. 1969, 6, 475.
- (23) He, Z.; Yudin, A. K. Org. Lett. 2006, 8, 5829.
- (24) Schroeder, N.; Wencel, D.; Glorius, F. J. Am. Chem. Soc. 2012, 134. 8298.
- (25) Balloch, L.; Kennedy, A. R.; Mulvey, R. E.; Rantanen, T.; Robertson, S. D.; Snieckus, V. *Organometallics* **2011**, *30*, 145.

- (26) Chan, V. S.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc.

- (20) Chan, V. S., Defghian, R. G., Teses, T. J. J.
 (20) Maji, M. S.; Murarka, S.; Studer, A. Org. Lett. 2010, 12, 3879.
 (28) Barrett, K. T.; Miller, S. J. J. Am. Chem. Soc. 2013, 135, 2963.
 (29) Thirunavukkarasu, V. S.; Hubrich, J.; Ackermann, L. Org. Lett. **2012**, *14*, 4210.